Net Zero Carbon Seminar and Net Zero Energy Seminar

Book NOW click here- Net Zero Carbon Seminar

Net Zero Energy Seminar

Net Zero Energy and Carbon Seminar

This is a  synopsis of the all the 14 talks In our  Net Zero Carbon Seminar .

Book NOW click here- Net Zero Carbon Seminar

 

We have organized this Net Zero Carbon Seminar with the intention to promote the idea in simplicity for all to understand. This will spear head the designs of buildings as Energy Efficient . Design of building will be a response to the call of global weather changes. This seminar is also some time refereed to as Architect Seminar,Architect training,Architect workshop,Engineering workshop,Engineering seminar, Engineering Training,Architect Conference, Engineering Conference, International Architect Conference or International Engineering Conference.

Talk 1. Targeting for  Net Zero Carbon Emission in Process and Product Design …Net Zero Energy Buildings
Synopsis of the Talk  Dr YewAi Tan

Oder a seat for the seminar now, by clicking here  Net Zero Carbon Seminar

At the UN Climate Summit in New York on 23 September 2014, the Prime Minister of Malaysia reiterated Malaysia's commitment towards reducing its carbon emissions, in terms of emissions intensity of its Gross Domestic Product (GDP), by 40% by 2020. This will be implemented by reducing carbon emissions through new policies on climate change and green technology. Under the 11 th Malaysian Plan, RM 2.3 billion has been set aside for green technology based projects. This pledge, originally made at the United Nations Climate Change Conference (UNFCC) 2009 in Copenhagen, Denmark, was conditional to receiving technological and financial assistance from developed countries. This year, Malaysia looks on track to hit the targeted carbon reduction emissions having achieved 33% reduction carbon intensity of its GDP. As GDP is the monetary value of finished goods and services, Malaysia will therefore have to grow its GDP without a parallel increase in emissions in order to achieve the 40% reduction.

The Climate Change problem will never go away on its own and ignorance on its seriousness is no longer an excuse for inaction. For effective mitigation

Net Zero Carbon and Net Zero Energy Cost

Net Zero Energy Cost Seminar

against climate change, there must first be acknowledgement that the burden must be borne by all. The next step will be how each and every one of us, the residents of planet earth, can help in reducing carbon emissions with a target towards achieving zero net carbon emissions. Before embarking on efforts to achieve zero carbon emission in process and product design, it is essential to be clear and familiar with the many terms and terminologies commonly associated with carbon emissions such as greenhouse gas (GHG) emissions, carbon footprint (CFP) , carbon capture, carbon sink, carbon neutral and energy neutral, etc. For example, CFP is defined as a measure of GHG emissions over the full life cycle of a process or product including the design stage, if applicable. It is the overall amount of not only carbon dioxide (CO 2 ) emissions but also emissions of other GHG such as methane (CH 4 ), nitrous oxide (N 2 O),chlorofluorocarbons (CFCs), hydro fluorocatbons (HCFs) and sulphur hexafluoride (SF 6 ) that are directly and indirectly associated with a product along its supply chain. GHG emission is an integral part of all systems of production and consumption, In the case of a process or product design, each activity within a supply chain process step which is involved in the production or design of the product must be analyzed to determine CFP measured in mass units (kg, t) of carbon dioxide equivalent (CO 2 eq) emitted. Through a carbon audit, any sector of an industry (e.g. palm oil or building industry) can systematically address environment-sensitive practices along the whole chain in the design and process of a product. One of the most important move that can be taken is to ensure that all products and services made and provided involve minimal carbon emissions. To arrive at net zero carbon emissions, emissions must be offset or subtracted and ways to achieve carbon neutrality will be highlighted in the paper. Suggestions on the formulation of possible mitigation strategies to curb GHG emissions and ways to target for zero net carbon emission by balancing emissions with simple negative emissions solutions such as tree- planting and the use of other more advanced technologies including the use of renewable energy generated from waste products, the sun or wind will also be discussed. The goal is to provide required information on the importance of our shared responsibility to reduce carbon emissions in the hope of ending the high emitting and energy-hungry practices of the modern world.

Talk 2. ACMV system design for Net Zero Energy Buildings in the tropics in the  Net Zero Carbon Seminar

by Dr Stellios Plainiotis

Net-zero energy buildings (Net-ZEBs) are a quantifiable design concept and an absolute solution to minimize the operational environmental impact of buildings. However designing such advanced buildings presents a challenge because there is no established design strategy to methodically reach the goal and many of the available calculation tools have limited applicability for Net-ZEBs. Appropriate modelling of building-integrated energy systems (passive and active) is essential for the design of ACMV systems and the study of optimal control strategies. These systems will play a major role in achieving the net-zero energy goal and need to be carefully selected, modelled, and sized for an optimum design. This talk focuses on optimizing active ACMV systems with emphasis on building simulation and parametric analysis. This presentation will review current design practice and tools for designing ACMV systems and presents methods employed by NEAPOLI to design ACMV systems in the tropics. It also discusses modelling issues and outlines the procedure used in several optimization case studies by NEAPOLI.

Talk 3: Achieving Net Zero Energy Status: the case of the Hospitality Sector in SE Asia

Synopsis of the Talk  in the  Net Zero Carbon Seminar by Dr Stellios Plainiotis
Oder a seat for the seminar now, by clicking here  Net Zero Carbon Seminar

Although the hospitality industry is responsible for only 2% of the world’s CO2 emissions, it makes an excellent sector for achieving Net-Zero Energy status  because energy  consumption  is  higher  than  in typical residential and non-residential buildings, so  there  is  a  larger potential for energy saving measures. Hospitality projects in Asia can benefit from reaching net-zero status through:

  • Energy savings and reduction of operational costs
  • Unique positioning in a highly competitive market
  • Improved image and service for guests
  • Access to a new “sustainability” market segment, both individuals and companies
  • Increased comfort as an added-value for hotels’ guests
  • Corporate Social Responsibility targets met; Environmental, social and economic sustainability.

There are however great challenges related to financing the additional initial capital expenditure and to  business model that includes a number of energy intensive operations associated to their customers’ comfort and expectations, therefore closely linked with their competitiveness and viability.  After presenting the fundamental concepts, design strategies, and technologies required to achieve net-zero energy in hospitality buildings, this presentation will discuss a case study of a Net-ZEB Hotel in Malaysia by NEAPOLI.

Talk 4: Generative and parametric design optimization techniques towards Net Zero Energy Buildings, Synopsis of the Talk  Net Zero Carbon Seminar by Mr Theodre G

Oder a seat for the seminar now, by clicking here  Net Zero Carbon Seminar

Net Zero Energy Buildings (Net-ZEBs) represent a new paradigm that radically changes the way we view and construct buildings. Our current practices, tools, and culture involved in the design and development of contemporary buildings are not entirely compatible with this new perspective. We are in dire need of new design paradigms that will allow the re-conception of the design process itself. NEAPOLI’s Research & Development efforts are focusing on two of the most important innovative design methodologies available today: generative and parametric design.

Generative design can be defined as an evolutionary process that charts the development of an original idea, searching quickly through all its possible permutations, testing different design configurations, learning and improving at each step. New design tools employed at NEAPOLI now allow cycling through thousands of design alternatives in small amounts of time, making generative design a very powerful approach especially for the early stage of design.

Parametric design can be defined as the varying of one (or more) building parameter(s) and performing a simulation to quantify that parameter’s impact. NEAPOLI employs parametric analyses to provide at least three valuable pieces of information:

  1. The optimal/near-optimal value of a design parameter, always in relation to other often competing parameters. If the performance metric for a particular parameter indicates that there is an optimum value, the design team may wish to use this value in the design, assuming it is practical, economical, and compatible with other design aspects.
  2. The relative sensitivity of a parameter. This is particularly useful when multiple parameters are compared.
  3.  The relative importance of accurately modelling a building system. The most care in accurate modelling should be given to the aspects that are most sensitive. Sensitivity analysis is a very important confidence building tool for NEAPOLI consultants.

This presentation will provide an exploration of these innovative design approaches, it will show how they can provide competitive advantages over contemporary processes, and finally share ideas and examples of their implementation in the design of Net-ZEBs.

 Talk 5: Net Zero Energy Design in practice: design optimization methodologies and tools Synopsis of the Talk  in  Net Zero Carbon Seminar  by Mr Theodre G

Traditional construction practice created buildings to meet current needs, without addressing how well they fit with the natural environment. Because they were lacking adaptive capabilities, they would usually require remodeling or replacement when use-patterns or external conditions changed, an approach that is costly both financially and environmentally. Net-ZEB buildings can provide solutions to this because not only are designed and built to produce all of their own energy, capture and treat all water, but they can also designed and operated to have a net-positive impact on the environment, including repairing surrounding ecosystems.

However new and innovative tools are required to achieve and realise that vision. While generative and parametric methodologies are gaining ground in both architecture and design practices, their practical use remains limited due to the lack of design tools equipped with generative and parametric capabilities.

This presentation will describe the current status of generative and parametric tools for the building design industry and how these are being used to improve building design. In a workshop-like manner, the audience will be taken, step-by-step, through real-life design examples showcasing NEAPOLI’s ‘box of tools’ paradigm which allows the development of highly complex and integrated models able to assess in parallel a wide variety of building performance and design issues.

Talk 6 : Net Zero Energy Design in Building Passive Design, Design Overall Integrated Design Approach in Net Zero Energy Design –Synopsis of the Talk in  Net Zero Carbon Seminar
by Ar Perumal Nagapushnam

  1. What is Net Zero Energy?
  2. Definitions of Net Zero Energy as per NREL

Net Zero Energy-The NREL has defined four ways of measuring the Net Zero Energy in buildings: –Net Zero Site Energy, Net Zero Source Energy, Net Zero Energy Emissions  , Net Zero Energy Cost

  • Principles of Net Zero Energy in establishing Net Zero Energy buildings
  • The overall integrated design approach with the Energy affecting considerations from the outset to create High Energy Performance building or Energy Efficient buildings.
  • Building Design Principles are:
    1) Optimum Orientation,
    2) Super Insulation of buildings by good thermal resistance materials,
    3) Shading, smart landscaping, living roof etc
    4) Good BAS system to manage energy consumption
    5) LED high performance systems
    6) Good active Mechanical and Electrical system
    7) Renewable Energy ( 4 Net Zero Energy categories)
    8) Energy Management in place-Sub metering, energy audit and Maintenance team crew
  • Calculations for NZEBs.
  • Conclusion with some real life project case studies of buildings designed in Malaysia
  • Terms used in NZEB
    NREL ,National Renewable Energy Laboratory of the USA, renewable energy and energy efficiency technologies. Energy Neutral Zero Carbon Hub Renewable Energy, Low Energy Building, High Performance Building ,ENERGY STAR ,Energy Protection Agency ,Building Code

Talk 7: Net Zero Emission Definitions and terms Calculations

Synopsis of the Talk in  Net Zero Carbon Seminar By Ar Perumal
Oder a seat for the seminar now, by clicking here  Net Zero Carbon Seminar
  1. What is Net Zero Carbon Emission?
  2. Terms used in of Net Zero Emission such as Carbon Neutral, Carbon footprint, ecological footprint, Water footprint, Biofuel- Primary energy Global warming, Acidification, Eutrophication, Carbon footprint, Ecological footprint, Accounting ,Carbon credit, Carbon offset , Carbon Emission, Transportation Carbon ,Operational Carbon-,Embodied Carbon emissions, Carbon neutrality, Life Cycle Assessment (LCA) , Life Cycle Cost (LCC),Water footprint, Water neutrality, ‘Water neutral’ ,Bluewater ,Green water, Grey waterEnergy audit, Fossil fuel,Green energy
  3. Accounting Principles of Net Zero Emission
  4. Comparison of Net Zero Emission as defined by Challenge 2030, NREL and Zero Carbon Hub.
  5. Benefits of Net Zero Emission in design with Biodiversity in designs.
  6. Conclusions with the importance of Net Zero Emission

Talk 8:Renewable Energy – and the case for Zero Carbon

Synopsis of the Talk in  Net Zero Carbon Seminar
Oder a seat for the seminar now, by clicking here  
Net Zero Carbon Seminar

By: Gregers Reimann

In a Low Carbon World, we will have to deploy on the dual strategy of energy efficiency and renewable energy. In this presentation, the focus will be on renewable energy and its stronger and stronger case as opposed to fossil fuels. Interestingly, renewable energy costs are starting to achieve grid parity. Moreover, once the true cost of fossil fuels is factored in, namely the external costs like (carbon) pollution, the business case for renewable energy becomes even better.

For Malaysia, biomass and solar energy are the most applicable conventional renewable energy sources, but once implemented on a big scale, they both take up significant land area. Therefore, apart from re-stating the importance of energy efficiency, this presentation will also examine how renewable energy can be integrated in our built environment without taking up ‘extra space’.
Highlights of this presentation include:

Referencing the recent IMF study on the true cost of fossil fuels and its astounding conclusions. For Malaysia, for example, if we were to pay the real cost of fossil fuels, the petrol should cost RM4.50 per liter, which is more than double of the current cost.

Calculations example of how much solar photo-voltaic panels are needed to cover the entire Malaysian annual electric consumption. The result may surprise you in a positive way.

Examples of BIPV (building integrated photovoltaic) and other innovative to integrate renewable energy in the built environment

Talk 9 : “Zero Energy / Carbon and Innovative Tropical Building Case Studies

Synopsis of the Talk in  Net Zero Carbon Seminar By: Gregers Reimann
Oder a seat for the seminar now, by clicking here  Net Zero Carbon Seminar

The biggest and cheapest carbon emission savings are found in the building sector. Therefore, the building sector will play a key role in achieving the low carbon sustainable society that experts are urgently calling for. This presentation will focus on Malaysian case studies of low energy buildings both for commercial and residential sector. The focus will be on the design strategies employed in the case studies, both with respect to innovative passive building design by working with the climate and with respect to innovative active design solutions for ventilation, cooling, lighting and controls.  The low carbon aspect of the presentation will focus on the operational energy, which constitutes the bulk of the life-time carbon emissions for most buildings. The case studies presented have achieved measured energy savings of 50% or more and often with an attractive short payback time from reduced monthly energy bills.
The presentation will also re-examine how to approach thermal comfort for people in an energy efficient way and with the added benefit of providing improved air quality.

Some of the case study highlights include:

Case study no. 1: Zero energy bungalow (2016) in Kuala Lumpur with innovative natural cooling system that lowers the indoor temperature by 2-3°C, hence, eliminating the need to use air-conditioning. In fact, the bungalow does not have any air-conditioning installed.

Case study no. 2: Innovative high rise day-lighting system (2015) in Kuala Lumpur. Even though the occupants engage the manual facade window blinds, the daylight system maintains 7-meter perimeter zone of the office fully day-light.

Case study no. 3: Energy efficient building retrofit project (ongoing) saving 50% of the energy consumption in part by a new approach to providing thermal comfort to the building occupants

Case study no. 4: Innovative energy efficient and low energy slab cooling as exemplified in two Malaysian offices buildings, the GEO Building (2007) and the ST Diamond building (2010).

Talk 10: Targeting for Zero Net Carbon Emission in Process and Product Design

Synopsis of the Talk in  Net Zero Carbon Seminar
Oder a seat for the seminar now, by clicking here  
Net Zero Carbon Seminar

  by YewAi Tan

At the UN Climate Summit in New York on 23 September 2014, the Prime Minister of Malaysia reiterated Malaysia’s commitment towards reducing its carbon emissions, in terms of emissions intensity of its Gross Domestic Product (GDP), by 40% by 2020. This will be implemented by reducing carbon emissions through new policies on climate change and green technology. Under the 11th Malaysian Plan, RM 2.3 billion has been set aside for green technology based projects.  This pledge, originally made at the United Nations Climate Change Conference (UNFCC) 2009 in Copenhagen, Denmark, was conditional to receiving technological and financial assistance from developed countries. This year, Malaysia looks on track to hit the targeted carbon reduction emissions having achieved 33% reduction carbon intensity of its GDP.  As GDP is the monetary value of finished goods and services, Malaysia will therefore have to grow its GDP without a parallel increase in emissions in order to achieve the 40% reduction.

The Climate Change problem will never go away on its own and ignorance on its seriousness is no longer an excuse for inaction.   For effective mitigations against climate change, there must first be acknowledgement that the burden must be borne by all.  The next step will be how each and every one of us, the residents of planet earth, can help in reducing carbon emissions with a target towards achieving zero net carbon emissions.

Before embarking on efforts to achieve zero carbon emission in process and product design, it is essential to be clear and familiar with the many terms and terminologies commonly associated with carbon emissions such as greenhouse gas (GHG) emissions, carbon footprint (CFP) , carbon capture, carbon sink, carbon neutral and energy neutral, etc. For example, CFP is defined as a measure of GHG emissions over the full life cycle of a process or product including the design stage, if applicable. It is the overall amount of not only carbon dioxide (CO2) emissions but also emissions of other GHG  such as methane (CH4), nitrous oxide (N2O), chlorofluorcatbons (CFCs), hydrofluorocatbons (HCFs) and sulphur hexafluoride (SF6) that are directly and indirectly associated with a product along its supply chain.

GHG emission is an integral part of all systems of production and consumption, In the case of a process or product design, each activity within a supply chain process step which is involved in the production or design of the product must be analysed to determine CFP measured in mass units (kg, t) of carbon dioxide equivalent (CO2eq) emitted. Through a carbon audit, any sector of an industry (e.g. palm oil or building industry) can systematically address environment-sensitive practices along the whole chain in the design and process of a product.   One of the most important move that can be taken is to ensure that all products and services made and provided involve minimal carbon emissions.  To arrive at net zero carbon emissions, emissions must be offset or subtracted and ways to achieve carbon neutrality will be highlighted in the paper.  Suggestions on the formulation of possible mitigation strategies to curb GHG emissions and ways to  target for zero net carbon emission by balancing emissions with simple negative emissions solutions such as tree-planting and the use of other more  advanced technologies including the use of renewable energy generated from waste products, the sun or wind will also be discussed. The goal is to provide required information on the importance of our shared responsibility to reduce carbon emissions in the hope of ending the high emitting and energy-hungry practices of the modern world.

Talk 11: LCA and LEED for Enhancing Energy and Environmental Performance of Buildings

Synopsis of the Talk in  Net Zero Carbon Seminar by YewAi Tan
Oder a seat for the seminar now, by clicking here  Net Zero Carbon Seminar

The orthodox goal of increasing housing for growing population needs is now slowly being replaced by a shift in focus to buildings that promote variety, access to healthy and clean air, and a healthy and ecological sustainability environment. This is driven by risks that climate change poses for human and natural systems.  Global warming, sea level rises and associated extreme weather events are now adversely affecting population health and will continue for centuries to come.

With over half the world’s population now living in urban areas, resilient urban housing plans will need to incorporate more extensive approaches to meet the challenges of a world imperiled by severe weather conditions resulting in floods and droughts.  Attention will be on enhancement of ecosystem health as well as the health and support of thriving urban environments.  The building and construction industry is known to be the one of largest contributors of environmental pollution.  According to the United Nations Environment Program Report, buildings account for a third of greenhouse gas (GHG) emissions, 25% of global water consumption and 40% of global energy consumption and resources.   The fact that this energy consumption in buildings can be reduced by 30% to 80% using proven and commercially available technologies accentuates the importance of greening buildings as one of the most effective ways to reduce the carbon footprint (CFP) of the building and construction industry.

The main objective of Green buildings is to reduce negative impacts and increase occupants’ health. Green buildings address issues concerning sustainable site planning, water and energy efficiency, conservation of resources and improved health, and the impact of buildings on health and indoor environmental quality.  The Malaysia Green Building Index (GBI), initiated in 2009, is based partly on USA’s Leadership in Energy and Environmental Design (LEED) but adapted to fit the Malaysian climatic conditions.

The LEED rating system is a voluntary U.S. based  green building programme which aims to “evaluate environmental performance from a whole building perspective over a building’s life cycle, providing a definitive standard for what constitutes a green building’’. In essence, the LEED method rates the energy and environmental performance of buildings and is clearly an environmental assessment tool.

CFP is a computed number which an industry can use as a baseline reference for improvement.  At the same time, the methodological tracing through Life Cycle Assessment (LCA) of the various sources of GHG emission in sustainable buildings will give a clearer indication on where mitigation steps can be implemented for GHG reduction.  LCA is also an essential component of building assessment as it is a step-by-step process for evaluating the environmental burdens associated with an activity, product or process.  The method, based on the life cycle of the activity, product or process identifies and quantifies energy and materials used and wastes released to the environment, thereby assesses the impact of those energy and material use and wastes to the environment. LCA is applicable to all system levels in the building sector. Each system has its own set of assumptions and limitations and each is designed to address certain aspects of environmental impacts.  An inventory of all inputs (e.g. energy, material, water used) into and outputs (final product, emissions, wastes)  out of the system will allow for calculation of impacts based on energy consumption, waste generation or other impact categories such as global warming or land use.   The approach can be used for the selection of building materials or for assessing the environmental impact associated with the physical building.  Therefore, in order to obtain useful information from environmental assessment of buildings, the rigor of an LCA approach can be used to support and complement the evaluation of LEED compliance.

Malaysia’s Green Diamond Building headquarters of the Energy Commission (Suruhanjaya Tenaga) of Malaysia in Putrajaya won Southeast Asia Energy Prize in 2012. The building, completed in 2009, earned Platinum ratings under Malaysia’s Green Building Index (GBI) and Singapore’s Green Mark program.

Book NOW click here- Net Zero Carbon Seminar

 

Hyper Green architect

Green architect

 

 

 

 

 

Organized by System Design Architect
Ar Perumal Nagapushnam.

What is Net Zero Energy Building design?

Prepared by Architect Perumal Nagapushnam
website:
http://www.sda-architect.com
System Design Architect

The Malaysian  Cultural City , Bentong in Malaysia  is the first of its kind in the world for Net Zero Energy Resort pioneering  in Net Zero Energy Building design for large scale projects. The challenges to achieve (NZEB) designs are real, as Resorts are energy guzzlers and achieving Zero Energy is difficult endeavor. This resort will be used a one stop destination for tourist all over the world. It is estimated that about 3000 tourist will visit the Cultural City per day. The Malaysian Cultural City shall been slated as an Iconic tourist destination as it show cases to the world the cultural diversity, that has successfully  prevailed  in Malaysia among 3 majors racial enclaves. The resort has a 680beded Hotel,33 chalets and a traditional Indian Village, traditional Chinese Village and a traditional Malay Village (kampung)which shall show case the diversity of Malaysian cultures.
Among other reasons for the project to be slated as a top Iconic tourist destination site due to  the Net Zero Energy Building design and  Hyper Green considerations.

Net Zero Energy Resort

Bentong Cultural Village, Malaysia designed as Net Zero Energy Village with a 680 bed room Hotels, chalets &Indian Villages

 

 

 

 

 

 

 

 

 

 

 

 

What are NZEB,Net Zero Energy Building designs?

Net Zero Energy Building design also called Net Zero Carbon building is an attempt to reduce the electrical bill to zero cost every year.  In this article we attempt to describe what constitutes a Net Zero Energy Building designs. There are about 4 definitions of Net Zero Energy Building (NZEB): by the National Renewable Energy Laboratory (NREL), USA.

  1. Net Zero Source Energy Building-A building that purchases or produces as much energy for a year by accounting the energy produced at the source
  2. Net Zero Energy Cost Building-The electric bill is covered every year by virtue of design, and production of energy at the site.
  3. Net Zero Energy Emission Building-The Carbon neutrality is achieved by optimizing the energy consumption and neutrality is obtained by offsetting using renewable energy.
  4. Net Zero Site Energy Building-A building site that produces at least as much renewable energy as it uses the energy, over the course of a year.

When we speak of (Net Zero Energy Building design), there is a general misconception that solar panels are used to produce all the energy required or others preconceive that there is a major reduction on the consumption of energy. In fact this misnomer, to depend entirely on Photo voltaic panels entirely, is not true as the cost of photo voltaic panels are so cost exorbitant that the cost of Photo voltaic may cost more than the building cost. And neither is the amount of consumption reduced. The above definitions by NREL, clearly speaks defies these misnomers as flawed.

There are much fears that Net Zero Energy is exclusively for small buildings and System Design Architect ( see http://www.sda-architect.com ) is committed to pioneer this latest technology in the frontiers of Energy Efficient buildings. The need to save energy is an application of a want to improve the reduction of energy. The world that is groping, floundering and flirting with the Green movement as a way to save the world without substantial scientific basis, Net Zero Energy movement has a direct saving impact to the environment by reducing energy, carbon emission etc. The Green movement reduces a nominal energy consumption but in NZEB, the energy savings are drastically reduced by 100%.

How does  Net Zero Energy Building design (NZEB) works

3R Doctrine .The methodology to produce Net Zero Energy Building design, is basically strategies centered around the 3R doctrine ie reduce, reuse and recycle. The wastage is systematically reduced either passively or actively .Recycling of energy is done by placing equipment such as recycling wheel where energy is reused and not wasted. In nature there is no wastage and we should learn from the Bio-metrics of nature. In nature wastage from one is a food source to another in the ecological food chain, unlike the case with human beings. Much of our energy is rather wasted and we are flaunting our resources away.

Soft-wares. We employ the latest computer energy simulations, in System Design Architect , using the software we will be able to identify the sources of energy consuming elements and eliminate it at the preliminary stages. Using a shoe box model with soft-wares as Ecotect, Vasari, Design studio, Therm and other personally developed software that instantly reveals the weakness of areas where energy guzzling is identified and eliminated. Each of these soft wares will serve a purpose and I will discuss them in detail in the forthcoming article.

Passive Design. By using passive design consideration techniques, the total heat gain (tropical heat /summer) or loss (winters) heat gain or loss reduced. The orientation of the building will realize heat savings by 15%. Other passive strategies are such as window shading, type of glass to be used in curtain walls, shading of building from the sun using smart landscaping will improve the energy savings tremendously. This includes insulation of the buildings where heat is gain into the building for summers or heat loss, in summers, are reduced. Using soft-ware that calculates the material to be used for insulation, whereby we minimize the loss of energy via conduction, convention, and radiation. This will be systematically be analyzed and energy saved. Please read more about Net Zero Energy Building design in the System Design’s  Website at http://www.sda-architect.com/

Active Design. This is where the high performance mechanical system is used to reduce the power usages. Equipment certified star rated as energy savings, are  to be selected based on actual performances and guarantees and not by virtues of these certifications. There is much fraudulent certification that has been exposed even in the US.

There are numerous other strategies such as LED, high performances air conditioning units, refrigerant types, heat recycle wheels and reduction of the electrical cyclical spikes. This will be dealt with in details in the future articles  as article on its own.

BAS, Building Automation System, There are much need for BAS systems to be designed in Buildings, as they reduce the consumption of energy and wastage. This is especially so in large projects where equipment such as air con  chillers, lift controls, lighting fitting sensors, motion sensors in escalators and light fittings cannot be monitored manually.

active designs

active designs

Renewable Energy. Each site has its prevailing characteristic for generating renewable energy, such as wind , solar, geo thermal and mini hydro. The type of renewable energy used to generate energy will depend on the availability of energy at the site.

renewable energy

wind turbine

Photo voltaic has it advantages of cost but in the tropics, the no of hours of cloud free hours per day, may not make photo voltaic as viable option. The viability of a wind turbine is not determined by no of hours there are sufficient wind to generate power, but the availability is day and night. Whereas, mini turbines and geo thermal systems may be produce energy for the whole day continuously and are not affected by the availability of the sun or wind. Each of the sources has their own weakness and strengths. The site is analyses for which option is the best option.

Why design for Net Zero Energy Building design?

There is much weakness in the present Green movement certified by Green bodies( Marks -Singapore, Leeds-US, GBI Malaysia) results in costlier building cost where the end users do not see the benefits of the Green buildings. For instance tenants of office space may not see the need to pay additional rentals, typically charged in Green Buildings. The tangible benefits are not realized by the tenants.Net Zero Energy is a Gold standard for Green and Sustainable movement.However, in NZEB, the tenants enjoy free electric bill and the Land Lords enjoy lower maintenance cost.

The Landlord may even generate revenue if he is able to surplus supply energy to the Grid and receive financial returns.

The benefits are marginal and more of a social contribution to the environment a response to the call to save the environment which case has not been scientifically founded. Read  http://www.sda-architect.com/75960-2/ for 8 reasons for why to go for Green and sustainability and the weakness in the present Green movement.

In NZEB, places such as Bali, Indonesia the live-hood of people has been disconnected with the Government public utility. In situations of a disaster, their resilience is greater in the event of a disastrous tragedy, as they are self-reliant and independent of on external environment. And their ability to survive a disaster is greater. Unlike in the case of 2011,Earthquake and Tsunami in Japan, that hit the national grid brought the country’s economic to its knees. The economy was dependent on the national grid and the economy was brought o a halt because of power shortage. If Japan’s Buildings  were Net Zero Energy Building design unlike Bali, their ability to recover would have been easier. In fact, places remote from the disaster could have had power and resume a normal lifer.

In fact, my call in this article is for building to have Net Zero Energy Building design, NZEB to be self-reliant and be organically dependent on nature and not dependent on the public utility companies. I underscore the need to tend towards organic architecture as being self-reliant and independence from the utility companies, generating power, water supply, water disposal, waste disposal (domestic and sewerage and industrial) and communication and living with nature within the site.

Net Zero Energy Building design is to the path to quick recovery and reconciliation and resilience from calamities that threatens to strike our nations to desolation and destitution.

waterfall H25

Green and Sustainable House Floor Plan

Check out our Green and Sustainable House floor plan, Click here

Carbon Trading

Green architect







Prepared by Architect Perumal 
Nagapushnam
System Design Architect











 

Case of Net Zero Energy Building all over the world
Many are skeptical about the reality of Net Zero Energy Building Design. As such I though it is best to show you the buildings which have achieved the Net Zero Energy Building Design status. This Net Zero Energy Building Design approaches and strategies has become a trend world wide as the movement is catching on quire rapidly. Here there are 5 cases of the strategies adopted world over from Indonesia, Malaysia to the US.
Case 1

Apartment in NY ( read on Apartment in NY )
The Apartment had 48 apartments of an gross area of 53,000-sq-ft
Approaches to Net Zero Energy Designs strategies(The strategies adopted contrived a 90% reduction of consumption of energy);
• wall and roof insulation,
• window glass with low-e coatings and insulated frames,
• shading of building
• Reduction of infiltration through building skin
• Compartmentalization of ventilation spaces provided the best controlled fresh air into the apartment spaces.
• A high-performance air-source heat pump was introduced as a heating plus cooling system.
• One VRF outdoor condensing unit is recommended per apartment
• Domestic hot water included heat recovery from the drain as a pre-heater and recovering the waste heat from the VRF system by using a heat exchanger.
• Improved zone temperature control and substantially reduced energy usage
• Higher-efficiency cooling/heating
• Improved tenant comfort; potential to sub meter heating, cooling, and DHW
• Resiliency (no boiler on the lower floors); and most important, dramatically lower carbon emissions.
• Lighting strategies include low lighting power density (LPD) design solutions while maintaining acceptable levels of illumination. Where applicable, occupancy sensors and bi-level lighting controls are evaluated. The most efficient available appliances are considered for apartments and common areas.
• Solar photovoltaic (PV) arrays
• High performing Appliances s such as : refrigerators, Clothes dryer, Television and TV set-top (cable) boxes

 

Case 2

The Bullitt Center in Seattle, Washington, 6 storey Office block of approx 60,000ft2

Approaches to Net Zero Energy Building Design strategies:
• Day lighting harvesting
• geothermal heating and cooling,
• Operable windows and other measures to increase its energy efficiency.
• increase the height of each floor of the building to allow for improved day lighting further into the core of the structure,
• Reducing the need for heat-generating light fixtures.
• Geothermal and radiant floor heating & cooling are used to efficiently moderate temperatures
• The BMS controls the heating & cooling , the window shades, operable windows , composting, water treatment, and ventilation.
• photo voltaic used to create renewable energy
Case 3
Pusat Tenaga Malaysia Zero Energy Office Building ( PTM ZEO)

The area of building was 43,000sq ft averaging BEI of 35kW/sqm.year with a reduction of 80% of the national average BEI
It is the world’s first net zero energy commercial office building.

Approaches to Net Zero Energy Designs strategies :
• Double-pane windows reducing heat gain and provide day light harvesting.
• Energy efficient building envelope.
• Day lighting with controls of blinds and light shelves.
• High efficiency pumps and fans.
• Desiccant heat wheel DE-humidification.
• Energy efficient office equipment.
• Concrete slab thermal cooling and storage.
• Wet/ trickling water night cooling roof.
• Phase change thermal storage.
• photo voltaic used to create renewable energy
Case 4

NREL Building, USA

The floor area is about Area-360,000sq ft , energy use intensity target of the new building is 35 kBtu/SF/year, (110kWh/m2/year)
Approaches to Net Zero Energy Building Designs strategies :
The largest commercial Net-Zero Energy Building in the United States
Energy performance for the facility is 50% better than ASHRAE 90.1 standards.
• orientation of the building to minimize heat gain and
• maximize day lighting harvesting
• operable triple-glazed windows,
• hydronic heating and cooling using thermal slabs, and
• demand-controlled outside air system with energy recovery.
• a combination of evaporative cooling,
• outside air ventilation,
• waste heat capture
• efficient servers
• The data center has a remarkable power usage effectiveness (PUE) rating of 1.12 compared to a national average of 1.91
• photo voltaic used to create renewable energy 2.5 MW solar PV rooftop and parking canopy
Case 5

Pertamina Building
There Pertamina Building , a 99 storey office tower will be a Net Zero Energy Building

Approaches to Net Zero Energy Building Designs strategies :
• A ‘wind funnel generate energy.
• The tower’s curved facade will reduce the heat gain throughout the year.
• Exterior sun shades will dramatically improve the workplace environment
• Artificial lighting in the office
• photo voltaic used to create renewable energy
Other case are reported here read on: http://living-future.org/casestudies
Prepared by Net Zero Energy Building Architect Perumal Nagapushnam